Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(2): 995-1003, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334979

RESUMO

For Raman hyperspectral detection and imaging in live cells, it is very desirable to create novel probes with strong and unique Raman vibrations in the biological silent region (1800-2800 cm-1). The use of molecular probes in Raman imaging is a relatively new technique in subcellular research; however, it is developing very rapidly. Compared with the label-free method, it allows for a more sensitive and selective visualization of organelles within a single cell. Biological systems are incredibly complex and heterogeneous. Directly visualizing biological structures and activities at the cellular and subcellular levels remains by far one of the most intuitive and powerful ways to study biological problems. Each organelle plays a specific and essential role in cellular processes, but importantly for cells to survive, mitochondrial function must be reliable. Motivated by earlier attempts and successes of biorthogonal chemical imaging, we develop a tool supporting Raman imaging of cells to track biochemical changes associated with mitochondrial function at the cellular level in an in vitro model. In this work, we present a newly synthesized highly sensitive RAR-BR Raman probe for the selective imaging of mitochondria in live endothelial cells.


Assuntos
Células Endoteliais , Mitocôndrias , Humanos , Mitocôndrias/química , Organelas , Sondas Moleculares , Diagnóstico por Imagem
2.
Chemistry ; 29(24): e202300224, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36807947

RESUMO

BODIPY-based donor-acceptor dyads are widely used as sensors and probes in life science. Thus, their biophysical properties are well established in solution, while their photophysical properties in cellulo, i. e., in the environment, in which the dyes are designed to function, are generally understood less. To address this issue, we present a sub-ns time-resolved transient absorption study of the excited-state dynamics of a BODIPY-perylene dyad designed as a twisted intramolecular charge transfer (TICT) probe of the local viscosity in live cells.

3.
Chemistry ; 29(24): e202300239, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36802283

RESUMO

BODIPY heterochromophores, asymmetrically substituted with perylene and/or iodine at the 2 and 6 positions were prepared and investigated as sensitizers for triplet-triplet annihilation up conversion (TTA-UC). Single-crystal X-ray crystallographic analyses show that the torsion angle between BODIPY and perylene units lie between 73.54 and 74.51, though they are not orthogonal. Both compounds show intense, charge transfer absorption and emission profiles, confirmed by resonance Raman spectroscopy and consistent with DFT calculations. The emission quantum yield was solvent dependent but the emission profile remained characteristic of CT transition across all solvents explored. Both BODIPY derivatives were found to be effective sensitizers of TTA-UC with perylene annihilator in dioxane and DMSO. Intense anti-Stokes emission was observed, and visible by eye from these solvents. Conversely, no TTA-UC was observed from the other solvents explored, including from non-polar solvents such as toluene and hexane that yielded brightest fluorescence from the BODIPY derivatives. In dioxane, the power density plots obtained were strongly consistent with TTA-UC and the power density threshold, the Ith value (the photon flux at which 50 % of ΦTTAUC is achieved), for B2PI was observed to be 2.5x lower than of B2P under optimal conditions, an effect ascribed to the combined influence of spin-orbit charge transfer intersystem crossing (SOCT-ISC) and heavy metal on the triplet state formation for B2PI.

4.
Org Biomol Chem ; 20(13): 2715-2728, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293914

RESUMO

A linear sequence to access a novel series of C-nucleosides bearing a quaternary carbon at the anomeric position tethered to a 4-substituted 1,2,3-triazole ring is described. Most of the compounds were obtained from a C-1 alkynyl furanoside, by a tandem or two-step CuAAC/functionalisation sequence, along with a diastereoselective cyanation of the furanoside derivatives in acidic conditions.


Assuntos
Antivirais , Nucleosídeos , Antivirais/farmacologia , Triazóis
5.
Phys Chem Chem Phys ; 23(46): 26324-26335, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787616

RESUMO

The radiative emission lifetime and associated S1 excited state properties of a BODIPY dye are investigated with TDDFT and EOM-CCSD calculations. The effects of a solvent are described with the polarizable continuum model using the linear response (LR) approach as well as state-specific methods. The Franck-Condon (FC), Herzberg-Teller (HT) and Duschinsky vibronic effects are evaluated for the absorption and emission spectra, and for the radiative lifetime. The transition energies, spectra shapes and radiative lifetime are assessed with respect to experimental results. It is found that the TDDFT transition energies are overestimated by about 0.4-0.5 eV, whereas EOM-CCSD improves the vertical emission energy by about 0.1 eV in comparison to TDDFT. The solvatochromic and Stokes shifts are better reproduced by the state-specific solvation methods, which show that these methods are more suited than the LR model to describe the solvent effects on the BODIPY dye. The vibronic effects lead to an increase of the radiative lifetime of about 0.4 to 1.0 ns depending on the theoretical approach, which highlights the importance of such effects. Moreover, the HT effects are negligible on both the spectra and lifetime, which demonstrates that the FC approximation is accurate for the BODIPY dye. Finally, the comparison with experimental data shows that the radiative lifetimes predicted by EOM-CCSD and TDDFT have comparable accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...